[1]关彬林,连鸣,苏明周.Q235剪切型耗能梁段超强系数的建议[J].地震工程与工程振动,2020,40(03):117-129.[doi:10.13197/j.eeev.2020.03.117.guanbl.012]
 GUAN Binlin,LIAN Ming,SU Mingzhou.Suggestions on overstrength factors of shear links with Q235 steel[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):117-129.[doi:10.13197/j.eeev.2020.03.117.guanbl.012]
点击复制

Q235剪切型耗能梁段超强系数的建议
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年03
页码:
117-129
栏目:
论文
出版日期:
2020-06-30

文章信息/Info

Title:
Suggestions on overstrength factors of shear links with Q235 steel
作者:
关彬林1 连鸣12 苏明周12
1. 西安建筑科技大学 土木工程学院, 陕西 西安 710055;
2. 西安建筑科技大学 结构工程与抗震教育部重点实验室, 陕西 西安 710055
Author(s):
GUAN Binlin1 LIAN Ming12 SU Mingzhou12
1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;
2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education(XAUAT), Xi’an 710055, China
关键词:
钢框筒剪切型耗能梁段超强系数长度比数值分析
Keywords:
steel framed-tubeshear linkoverstrength factorlength rationumerical analysis
分类号:
TU973.17TU393.2
DOI:
10.13197/j.eeev.2020.03.117.guanbl.012
摘要:
含可更换剪切型耗能梁段钢框筒是一种耗能性能良好的结构,利用位于部分裙梁跨中的耗能梁段集中塑性变形,有利于震后损坏耗能梁段的快速替换和结构功能的快速恢复。在整体结构的设计和性能分析中,Q235耗能梁段的超强系数和剪切铰模型至关重要。利用SAP2000软件设计了一个30层原型结构,通过试验验证了有限元建模方法的正确性,比较了两种子结构的性能,基于简化的子结构考察了柱轴压比、耗能梁段长度比的影响,以及Q235剪切型耗能梁段的屈服和抗拉强度不同组合下的超强系数,对耗能梁段的剪切铰参数进行了建议。研究表明:随着子结构柱轴压比的增大,子结构的水平力逐渐减小,但耗能梁段的滞回性能基本不变;建议用于钢框筒中的剪切型耗能梁段的长度介于1/8~1/4柱中心线距离,且耗能梁段的长度比建议采用0.79~1.30;长度比为0.79,0.96,1.13,1.30和1.46的Q235耗能梁段的平均超强系数分别为1.62,1.58,1.57,1.52和1.47,钢材的抗拉强度对耗能梁段的超强系数影响较小;用于剪切型耗能梁段端部连接设计的剪力可取1.3倍的预期受剪承载力。
Abstract:
Steel framed-tube structure with replaceable shear links (SFTS-links) is a kind of structure with good energy dissipation, and most of plasticity is isolated to links located in the mid-span of partial spandrel beams, which is conducive to rapid replacement of dameged links after earthquakes and rapid recovery of structural functions. In the design and performance analysis of the integrated structure, the overstrength factor of shear links with Q235 steel and model of shear hinges are essential. A 30-storey SFTS-links prototype is designed by SAP2000 software, and the validity of finite element modelling method is verified by experimental data. The performance of two substructures is compared. Based on the simplified substructure, the influence of axial compression ratio of columns and length ratio of links on the substructure and link are investigated, and the overstrength factor under different combinations of yield and tensile strength of shear links with Q235 steel are compared, and parameters of shear hinges of links are suggested. The results shows that with the increasing axial compression ratio of columns, the horizontal load of the substructure gradually decreases, but the hysteretic behavior of links is basically unchanged; it is recommended that the length of links in SFTS-links is 1/8~1/4 of the centerline distance of columns, and the length ratio of links is recommended to be 0.79~1.30; the average overstrength factors of the Q235 links with length ratios of 0.79, 0.96, 1.13, 1.30 and 1.46 are 1.62, 1.58, 1.57, 1.52 and 1.47, respectively, and the tensile strength of Q235 steel has little influence on the overstrength factor of shear links; the shear force for connection design of link ends can take 1.3 times the expected shear capacity.

参考文献/References:

[1] 关彬林, 连鸣, 苏明周, 等. 高层钢框筒结构截面尺寸预估的新方法[J]. 西安建筑科技大学学报:自然科学版, 2018, 50(4):526-535. GUAN Binlin, LIAN Ming, SU Mingzhou, et al. A new method for estimating section dimension of high-rise steel framed-tube structure[J]. J. Xi’an Univ. of Arch. & Tech:Natural Science Edition, 2018, 50(4):526-535. (in Chinese)
[2] 关彬林, 连鸣, 苏明周. 钢框筒Pushover分析侧向力分布方式的影响比较[J].地震工程与工程振动, 2019, 39(1):146-157. GUAN Binlin, LIAN Ming, SU Mingzhou. Comparison of influence of lateral load patterns on Pushover analysis of steel framed-tube structure[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1):146-157. (in Chinese)
[3] San Francisco Planning and Urban Renewal Association (SPUR). The resilient city:Creating a new framework for disaster planning[EB].http://www.spur.org/featured-project/resilient-city, 2009.
[4] National Research Council. National earthquake resilience:research, implementation and outreach[R]. Washington, DC:the National Academies Press, 2011.
[5] Nikoukalam M T, Dolatshahi K M. Development of structural shear fuse in moment resisting frames[J]. Journal of Constructional Steel Research, 2015, 114:349-361.
[6] Fortney P J, Shahrooz B M, Rassati G A. Large-scale testing of a replaceable "fuse" steel coupling beam[J]. Journal of structural engineering, 2007, 133(12):1801-1807.
[7] Dubina D, Stratan A, Dinu F. Dual high-strength steel eccentrically braced frames with removable links[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(15):1703-1720.
[8] Mansour N, Christopoulos C, Tremblay R. Experimental validation of replaceable shear links for eccentrically braced steel frames[J]. Journal of Structural Engineering, 2011, 137(10):1141-1152.
[9] 纪晓东, 马琦峰, 王彦栋, 等. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6):1-11. JI Xiaodong, MA Qifeng, WANG Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams[J]. Journal of Building Structures, 2014, 35(6):1-11. (in Chinese)
[10] 纪晓东, 王彦栋, 马琦峰, 等. 可更换钢连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10):1-10. JI Xiaodong, WANG Yandong, MA Qifeng, et al. Experimental study on seismic behavior of replaceable steel coupling beams[J]. Journal of Building Structures, 2015, 36(10):1-10. (in Chinese)
[11] 关彬林, 连鸣, 苏明周. 含可更换剪切型耗能梁段的组合钢框筒性能优势研究[J]. 建筑钢结构进展, 2020, 22(1):26-34,46. GUAN Binlin, LIAN Ming, SU Mingzhou. Study on the performance advantage of composite steel framed-tube structure with replaceable shear links[J]. Progress in Steel Building Structures, 2020, 22(1):26-34,46. (in Chinese)
[12] 关彬林, 连鸣, 苏明周.基于含耗能梁段钢框筒侧向力分布的影响比较[J].地震工程与工程振动, 2020, 40(1):141-154. GUAN Binlin, LIAN Ming, SU Mingzhou. Comparison of influence of lateral load patterns on steel framed-tube structure with links[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(1):141-154. (in Chinese)
[13] 关彬林, 连鸣, 苏明周. 含可更换剪切型耗能梁段的组合钢框筒截面尺寸预估方法探究[J]. 建筑钢结构进展, 2020, 22(3):1-11,21. GUAN Binlin, LIAN Ming, SU Mingzhou. Research on the estimation method of section dimension of composite steel framed-tube structure with replaceable shear links[J]. Progress in Steel Building Structures, 2020, 22(3):1-11,21.(in Chinese)
[14] AISC 341-10 Seismic Provisions for Structural Steel Buildings[S]. American Institute of Steel Construction, Chicago, IL, 2010.
[15] Arce G. Impact of higher strength steels on local buckling and overstrength of links in eccentrically braced frames[D]. Austin:University of Texas, 2002.
[16] FEMA356. Prestandard and commentary for the seismic rehabilitation of buildings[R]. Federal Emergency Management Agency, Washington DC, 2000.
[17] Richards, P. Cyclic Stability and Capacity Design of Steel Eccentrically Braced Frames[D]. University of California, San Diego, San Diego, CA; 2004.
[18] Hjelmstad K D, Popov E P. Cyclic behavior and design of link beams[J]. Journal of Structural Engineering, 1983, 109(10):2387-2403.
[19] Mahmoudi F, Dolatshahi K M, Mahsuli M, et al. Experimental evaluation of steel moment resisting frames with a nonlinear shear fuse[C]//Geotechnical and Structural Engineering Congress, 2016:624-634.
[20] Mansour N. Development of the design of eccentrically braced frames with replaceable shear links[D]. Toronto:University of Toronto, 2010.
[21] Della Corte G, D’Aniello M, Landolfo R. Analytical and numerical study of plastic overstrength of shear links[J]. Journal of Constructional Steel Research, 2013, 82:19-32.
[22] GB50017-2017钢结构设计标准[S]. 北京:中国建筑工业出版社,2017. GB50017-2017 Standard for Design of Steel Structures[S]. Beijing:China Architecture & Building Press, 2017. (in Chinese)
[23] 薛建阳, 翟磊, 马林林, 等. 钢结构仿古建筑带斗栱檐柱抗震性能试验研究及有限元分析[J]. 土木工程学报, 2016, 49(7):57-67. XUE Jianyang, ZHAI Lei, MA Linlin, et al. Experimental study and numerical analysis on seismic behavior of steel eave columns with Dougong in imitated ancient building[J]. China Civil Engineering Journal, 2016, 49(7):57-67. (in Chinese)
[24] 刘秀丽, 王燕, 李美红, 等. 钢结构T形连接高强度螺栓受力分析及数值模拟[J]. 建筑科学与工程学报, 2016, 33(2):63-70. LIU Xiuli, WANG Yan, LI Meihong, et al. Force analysis and numerical simulation of high strength bolts in T-sub connection of steel structure[J]. Journal of Architecture and Civil Engineering, 2016, 33(2):63-70. (in Chinese)

相似文献/References:

[1]关彬林,连鸣,苏明周.钢框筒Pushover分析侧向力分布方式的影响比较[J].地震工程与工程振动,2019,39(01):146.[doi:10.13197/j.eeev.2019.01.146.guanbl.017]
 GUAN Binlin,LIAN Ming,SU Mingzhou.Comparison of influence of lateral load patterns on Pushover analysis of steel framed-tube structure[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2019,39(03):146.[doi:10.13197/j.eeev.2019.01.146.guanbl.017]
[2]关彬林,连鸣,苏明周.基于含耗能梁段钢框筒侧向力分布的影响比较[J].地震工程与工程振动,2020,40(01):141.[doi:10.13197/j.eeev.2020.01.141.guanbl.014]
 GUAN Binlin,LIAN Ming,SU Mingzhou.Comparison of influence of lateral load patterns on steel framed-tube structure with links[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):141.[doi:10.13197/j.eeev.2020.01.141.guanbl.014]

备注/Memo

备注/Memo:
收稿日期:2019-06-15;改回日期:2019-12-05。
基金项目:国家自然科学基金项目(51708444);陕西省自然科学基础研究计划项目(2018JQ5074);陕西省教育厅专项科研计划项目(18JK0456)
作者简介:关彬林(1989-),男,博士研究生,主要从事新型钢结构体系抗震性能研究.E-mail:guanbinlin@163.com
通讯作者:连鸣(1987-),男,副教授,博士,主要从事新型钢结构体系抗震性能与设计理论研究.E-mail:lianming0821
更新日期/Last Update: 1900-01-01