[1]刘荟达,王永志.两种微倾黏土场地离心模型制备方法适用对比研究[J].地震工程与工程振动,2020,40(03):130-138.[doi:10.13197/j.eeev.2020.03.130.liuhd.013]
 LIU Huida,WANG Yongzhi.A comparative study on the applicability of two centrifugal modelling methods for slightly inclined clay site[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):130-138.[doi:10.13197/j.eeev.2020.03.130.liuhd.013]
点击复制

两种微倾黏土场地离心模型制备方法适用对比研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年03
页码:
130-138
栏目:
论文
出版日期:
2020-06-30

文章信息/Info

Title:
A comparative study on the applicability of two centrifugal modelling methods for slightly inclined clay site
作者:
刘荟达12 王永志1
1. 中国地震局 工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 中国建筑基础设施有限公司, 北京 100044
Author(s):
LIU Huida12 WANG Yongzhi1
1. Institute of Engineering Mechanics, China Earthquake Administration;Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Harbin 150080, China;
2. China Construction Infrastructure Corp., Ltd., Beijing 100044, China
关键词:
场地侧移动力离心模型制模方法抗剪强度适用性
Keywords:
seismic lateral spreadingcentrifugal dynamic modelmodelling methodshear strengthapplicability
分类号:
TU4
DOI:
10.13197/j.eeev.2020.03.130.liuhd.013
摘要:
侧移是强震灾害中场地地基破坏的典型形式之一,而倾斜场地是侧移发生的一个重要条件。倾斜场地的制备是开展离心地震模型试验的基础而重要环节,针对两种微倾灵敏或软黏土场地的制备方法,通过常重力和60 g离心加速度下的T-bar试验,探讨抗剪强度的分布规律与空间均匀性,对比了两方法的适用性。试验结果表明:表面斜割法获得模型的抗剪强度随深度变化较均匀,常重力和离心加速度下与理论状态较好吻合;双箱变换-倾楔法在拆换的剪切箱内抗剪强度随深度发生了显著折减,且在顶部呈现回弯现象,常重力和离心加速度下与理论状态偏差较大,折减系数约为0.31;相比而言,前者更适于制备微倾灵敏黏土场地模型。研究方法和结论,对动力离心模型试验制备方法选取和进一步开展黏土场地侧移离心模型试验研究,提供了重要借鉴和理论支撑。
Abstract:
Lateral spreading is one of the typical damage of site foundation in strong earthquake disaster, andinclination of site is an important condition for lateral displacement.The preparation of inclined model is a basis and important part of centrifugal seismic test.Aiming at two preparation methods of slightly inclined sensitiveandsoftclay model, T-bar test has been done under constant gravity and 60 g centrifugal acceleration, the distribution law and spatial uniformity of shear strength are discussed, and the applicability of the two methods is compared. The experimental results show that the shear strength of the model obtained from the oblique cutting method changes uniformly with the depth, and it is in good agreement with the theoretical state under constant gravity and centrifugal acceleration; the shear strength of the model obtained from two box-wedge method shows significant reduction along the depth, and there is a back bending phenomenon at the top,under constant gravity and centrifugal acceleration, the deviation between the measured results and the theoretical state is large, and the reduction coefficient is about 0.31. In comparison, the former method is more suitable for the preparation of slightly inclined sensitiveclay site model.The research and conclusions provide important reference and theoretical support for the selection of preparation methods of dynamic centrifugal model test and the further study of lateral spreading centrifugal model test of clay site.

参考文献/References:

[1] 庄海洋, 付继赛, 陈苏, 等. 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4):1263-1272. ZHUANG Haiyang, FU Jisai, CHEN Su, et al. Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test[J]. Rock and Soil Mechanics, 2019, 40(4):1263-1272. (in Chinese)
[2] 汪明武, Tobita T, Iai S. 倾斜液化场地桩基地震响应离心机试验研究[J]. 岩石力学与工程学报, 2009, 28(10):73-78. WANG Mingwu,TOBITA T,IAI S. Dynamic centrifuge tests of seismic responses of pile foundations in inclined liquefiable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):73-78.(in Chinese)
[3] 李程程, 曹振中, 李瑞山, 等. 场地液化侧移等级判别标准及其可靠性分析[J]. 岩土工程学报, 2016, 38(9):1668-1677. LI Chengcheng, CAO Zhenzhong, LI Ruishan, et al. Assessment criterion for level of liquefaction-induced lateral spread and its reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9):1668-1677.(in Chinese)
[4] Boulanger R W, Kutter B L, Brandenberg S J. Pile foundations in liquefied and laterally spreading ground during earthquakes:centrifuge experiments & analyses[R]. Univercity of California at Davis, UCD/CGM-03/31, 2003.
[5] 李雨润, 袁晓铭. 液化场地上土体侧向变形对桩基影响研究评述[J]. 世界地震工程, 2004, 20(2):17-22. LI Yurun, YUAN Xiaoming. State-of-art of study on influences of liquefaction-induced soil spreading over pile foundation response[J].World Earthquake Engineering, 2004, 20(2):17-22. (in Chinese)
[6] 凌贤长, 唐亮. 液化侧扩流场地桥梁桩基抗震研究进展[J]. 地震工程与工程振动, 2015, 35(1):1-10. LING Xianzhang, TANG Liang. Recent advance in seismic analysis for bridge foundations in liquefaction-induced lateral spreading soils[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(1):1-10. (in Chinese)
[7] Taboada-Urtuzuástegui V M, Dobry R. Centrifuge modeling of earthquake-induced lateral spreading in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12):1195-1206.
[8] Piper D J W, Shor A N, Farre J A, et al. Sediment slides and turbidity currents on the Laurentian Fan:Sidescan sonar investigations near the epicenter of the 1929 Grand Banks earthquake[J]. Geology, 1985, 13(8):538.
[9] Stark T D, Contreras I A. Fourth avenue landslide during 1964 alaskan earthquake[J]. Journal of Geotechnical and Geoenvironmantal Engineering, 1998, 124(2):99-109.
[10] Lefebvre G, Leboeuf D, Hornych P, et al. Slope failures associated with the 1988 Saguenay earthquake, Quebec, Canada[J]. Canadian Geotechnical Journal, 1992, 29(1):117-130.
[11] 张倬元, 王士天, 王兰生, 等.工程地质分析原理[M]. 北京:地质出版社, 2009. ZHANG Zhaoyuan, WANG Shitian, WANG Lansheng, et al. Engineering geological analysis principle[M]. Beijing:Geological Publishing House, 2009. (in Chinese)
[12] 朱超祁, 贾永刚, 刘晓磊, 等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6):163-173. ZHU Chaoqi, JIA Yonggang, LIU Xiaolei, et al. Classification and genetic mechanism of submarine landslide:a review[J]. Marine Geology & Quaternary Geology, 2015, 35(6):163-173. (in Chinese)
[13] 顾小芸.黏质海底稳定性实例分析[J].工程地质学报, 1996, 4(1):32-38. GU Xiaoyun. Case study of clayed seabottom stability[J]. Journal of Engineering Geology, 1996, 4(1):32-38. (in Chinese)
[14] Pestana J M, Nadim F. Nonlinear site response analysis of submerged slopes[R]. Geotechnical Engineering Report No.UCB/GT/2000-04, University of California, Berkeley, 2000.
[15] 邵广彪, 冯启民, 王华娟.海底缓坡场地地震侧移数值分析方法[J].岩土力学, 2006, 27(9):1401-1406. SHAO Guangbiao, FENG Qingmin, WANG Huajuan. A method for numerical analysis of earthquake induced lateral displacement of submerged gentle slope[J]. Rock and Soil Mechanics, 2006, 27(9):1401-1406. (in Chinese)
[16] 王永志. 大型动力离心机设计理论与关键技术研究[D].哈尔滨:中国地震局工程力学研究所, 2013. WANG Yongzhi. Study on design theory and key technology of large dynamic centrifuge[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese)
[17] 于玉贞, 邓丽军. 土工动力离心模型试验在边坡工程中的应用综述[J]. 世界地震工程, 2007, 23(4):212-215. YU Yuzhen,DENG Lijun. Application of dynamic centrifuge model test to slope engineering[J]. World Earthquake Engineering, 2007, 23(4):212-215. (in Chinese)
[18] 王睿, 张建民, 张嘎.离心机振动台试验中侧向流动地基位移分析方法研究[J].世界地震工程, 2010, 26(增刊1):225-229. WANGRui, ZHANGJianmin, ZHANG Ga. Lateral spreading ground displacement analysis method in centrifuge shaking table tests[J]. World Earthquake Engineering, 2010, 26(S1):225-229. (in Chinese)
[19] 王海, 王永志, 袁晓铭, 等.砂雨法饱和模型制样相对密度控制要素与评价方法[J].西南交通大学学报, 2019, 54(2):343-350, 372. WANG Hai, WANG Yongzhi, YUAN Xiaoming, et al. Control Factors and Assessment Technique of Relative Density Using Pluviation Method for Saturated Model[J]. Journal of SouthwestJiaotong University, 2019, 54(2):343-350, 372.(in Chinese)
[20] 王永志, 王海, 袁晓铭, 等.土工离心试验应力相似差异特征与设计准则[J].岩土工程学报, 2018, 40(11):2148-2154. WANG Yongzhi, WANG Hai, YUAN Xiaoming, et al. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11):2148-2154.(in Chinese)
[21] DL/T 5102-2013土工离心模型试验技术规程[S]. 北京:中国电力出版社, 2014. DL/T 5102-2013 Specification for Geotechnical Centrifuge Model Test Techniques[S]. Beijign:China Power Press, 2014.
[22] 陈捷. 深厚黏土场地地震响应与灾变离心物理模拟与数值分析[D]. 杭州:浙江大学,2018. CHEN Jie. Centrifuge modelling and numerical analysis on seismic site response and catastrophes of deep clay deposites[D]. Hangzhou:ZheJiang University, 2018. (in Chinese)
[23] 张宇亭. 水平循环荷载作用下群桩与软黏土相互作用离心模型试验研究[J].水道港口, 2018, 39(2):211-216. ZHANG Yuting. Centrifuge modeling of pile group response due to lateral cyclic loading in soft clay[J]. Journal of Waterway and Harbor, 2018, 39(2):211-216.(in Chinese)
[24] Lau B H. Cyclic behaviour of monopile foundations for offshore wind turbines in clay[D].London:University of Cambridge, 2015.
[25] Almeida M S S. Stage constructed embankments on soft clays[D]. London:University of Cambridge, United Kingdom, 1984.
[26] Springman S M. Lateral loading on piles due to simulated embankment construction[D]. London:Cambridge University, 1989.
[27] Houlsby G T, Martin C M. Modelling of the behaviour of foundations of jack-up units on clay[C]//Predictive soil mechanics:Proceedings of the Wroth Memorial Symposium held at St Catherine’s College, 1992:339-358.
[28] Sharma J S, Bolton M D. Centrifuge modeling of an embankment on soft clay reinforced with geogrid[J]. Geotextile and Geomembranes, 1996, 14(1), 1-17.
[29] Ganesan S A, Bolton M D. Characterisation of a high plasticity marine clay using a T-bar penetrometer[J]. Underwater Technology, 2013, 31(4):179-185.
[30] Wood D M. Soil behaviour and critical state soil mechanics[M]. London:Cambridge University Press, 1990.
[31] Sahdi F, Gaudin C, White D J. Strength properties of ultra-soft kaolin[J]. Canadian Geotechnical Journal, 2014, 51(4):420-431.

备注/Memo

备注/Memo:
收稿日期:2019-08-09;改回日期:2019-10-11。
基金项目:中国地震局工程力学研究所基本科研业务费专项项目(2019EEEVL0203);国家自然科学基金项目(51609218);黑龙江省自然科学基金项目(YQ2019E035)
作者简介:刘荟达(1991-),男,博士研究生,主要从事土动力学和岩土地震工程研究.E-mail:x-lhd@hotmail.com
更新日期/Last Update: 1900-01-01