[1]张令,徐略勤.近断层地震下大跨钢管混凝土拱桥损伤模式研究[J].地震工程与工程振动,2020,40(03):204-215.[doi:10.13197/j.eeev.2020.03.204.zhangl.021]
 ZHANG Ling,XU Lueqin.Damage pattern analysis of large-span CFST arch bridge under near-fault earthquakes[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2020,40(03):204-215.[doi:10.13197/j.eeev.2020.03.204.zhangl.021]
点击复制

近断层地震下大跨钢管混凝土拱桥损伤模式研究
分享到:

《地震工程与工程振动》[ISSN:/CN:]

卷:
40
期数:
2020年03
页码:
204-215
栏目:
论文
出版日期:
2020-06-30

文章信息/Info

Title:
Damage pattern analysis of large-span CFST arch bridge under near-fault earthquakes
作者:
张令12 徐略勤12
1. 重庆交通大学 土木工程学院, 重庆 400074;
2. 重庆交通大学, 省部共建山区桥梁及隧道工程国家重点实验室, 重庆 400074
Author(s):
ZHANG Ling12 XU Lueqin12
1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
关键词:
钢管混凝土拱桥损伤模式近断层地震PMM屈服面PM曲线
Keywords:
CFST arch bridgedamage patternnear-fault earthquakesPMM yield surfacesPM curves
分类号:
U442.5+5
DOI:
10.13197/j.eeev.2020.03.204.zhangl.021
摘要:
为了研究并揭示近断层地震下大跨钢管混凝土拱桥的损伤模式,以某三跨飞燕式钢管混凝土拱桥为研究背景,建立了考虑自平衡荷载、桩-土作用等效应的三维分析模型,依据近断层地震脉冲波的分类方法选取了9组近断层强震记录进行非线性时程分析,并基于关键构件的首次损伤时间,利用关键构件截面的PMM屈服面、PM曲线和截面应力评估方法,研究了桥例的地震损伤模式。结果表明:近断层地震的速度脉冲也是引起结构发生破坏的重要原因之一;钢筋混凝土边拱及钢管混凝土主拱均以面内弯曲损伤为主,K形风撑的斜撑是抗震薄弱部位,存在受压和受拉两种损伤模式;大跨钢管混凝土拱桥最易受损的部位是边拱拱脚,其次是边拱四分之一跨径处截面和K形风撑的斜撑,然后是主拱拱脚和主拱截面突变处,系杆和吊杆一般不会出现损伤状况,且有一定的强度储备。
Abstract:
In order to investigate and reveal the damage pattern of large-span CFST arch bridge subject to near-fault motions, a three-dimensional analysis model considering self-balancing load, pile-soil interaction and other effects is established with a three-span flying birds CFST arch bridge as the research background. Nine groups of near-fault strong earthquake records were selected based on the classification method of near-fault seismic pulse motions for nonlinear time-history analysis. Deploying PMM yield surfaces, PM curves and section stress evaluation method of critical components section, the seismic damage modes of bridge case are studied based on the definition of the first damage time of critical components. The results indicate that the velocity pulses of near-fault earthquakes are one of the important causes of structural damage. Both the reinforced concrete side arch and the CFST main arch are mainly in-plane bending damage, and the K-shaped diagonal braces are weak seismic sections which are characterized by compression and tension damage modes. The most vulnerable part of large-span CFST arch bridge is the side arch foot, followed by the cross section at quarter span of side arch and the K-shaped wind brace, then the main arch foot and the main arch section are suddenly changed. Tie bars and suspenders generally don’t suffer from damage and have a certain strength reserve.

参考文献/References:

[1] 郑皆连, 王建军. 中国钢管混凝土拱桥[J]. 工程, 2018, 4(1):306-331. ZHENG Jielian, WANG Jianjun. China concrete filled steel tubular arch bridge[J]. Engineering, 2018, 4(1):306-331.(in Chinese)
[2] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 49(6):54-65. CHEN Baochun, WEI Jiangang, ZHOU Jun, et al. Present situation and prospect of CFST arch bridges in China[J]. China Civil Engineering Journal, 2017, 49(6):54-65. (in Chinese)
[3] 庄卫林, 陈乐生. 汶川地震公路震害调查分析:桥梁与隧道[M]. 北京:人民交通出版社, 2013. ZHUANG Weilin, CHEN Lesheng. Analysis of highways’ damage in the Wenchuan Earthquake:bridge and tunnel[M]. Beijing:China Communications Press, 2013. (in Chinese)
[4] 杜骞, 夏修身, 孙学先. 大跨度钢管混凝土拱桥非线性抗震性能研究[J]. 地震工程学报, 2018, 40(2):206-212. DU Qian, XIA Xiushen, SUN Xuexian. Research on nonlinear seismic behavior of long-span CFST arch bridge[J].China Earthquake Engineering Journal, 2018, 40(2):206-212. (in Chinese)
[5] Bi K, Hao H, Ren W. Seismic response of a concrete filled steel tubular arch bridge to spatially varying groundmotions including local site effect[J]. Advances in Structural Engineering, 2013, 16(10):1799-1817.
[6] Zhang D Y, Li X, Yan W M, et al. Stochastic seismic analysis of a concrete-filled steel tubular (CFST) arch bridge under tridirectional multiple excitations[J]. Engineering Structures, 2013, 52:355-371.
[7] 李勇, 任晓强, 闫维明, 等. 三跨飞燕式异型钢管混凝土拱桥模型振动台试验[J]. 北京工业大学学报, 2012, 38(9):1302-1309. LI Yong, REN Xiaoqiang, YAN Weiming, et al. Shaking table test of three-span flying swallow-shaped special-shaped CFST arch bridge model[J]. Journal of Beijing University of Technology, 2012, 38(9):1302-1309. (in Chinese)
[8] 闫维明, 李晰, 陈彦江, 等. 钢管混凝土拱桥台阵试验研究:场地条件的影响[J]. 工程力学, 2013, 30(6):116-123. YAN Weiming, LI Xi, CHEN Yanjiang, et al. Array experimental study of CFST arch bridges:influence of site conditions[J]. Engineering Mechanics, 2013, 30(6):116-123. (in Chinese)
[9] 谢开仲, 吕文高, 覃乐勤, 等. 钢管混凝土拱桥地震破坏评估研究[J]. 中国公路学报, 2012, 25(2):53-59. XIE Kaizhong, LV Wengao, QIN Leqin, et al. Research on seismic damage assessment of CFST arch bridge[J]. China Journal of Highway and Transport, 2012, 25(2):53-59. (in Chinese)
[10] 夏修身, 杜骞, 戴胜勇. 大跨度钢管混凝土拱桥抗震性能指标研究[J]. 世界地震工程, 2019, 35(1):110-116. XIA Xiushen, DU Qian, DAI Shengyong. Seismic performance index of long-span concrete filled steel tube arch bridges[J].World Earthquake Engineering, 2019, 35(1):110-116. (in Chinese)
[11] Anderson JC, Bertero VV. Uncertainties inestablishing design earthquakes[J]. Journal of Structural Engineering, 1987, 113(8):1709-1724.
[12] Hall JF, Heaton TH, Halling MW, et al. Near-source ground motion and its effects on flexible buildings[J]. Earthquake Spectra, 1995, 11(4):569-605.
[13] JTG/T D65-06公路钢管混凝土拱桥设计规范[S]. 北京:人民交通出版社, 2015. JTG/T D65-06 Design Code for Concrete Filled Steel Tubular Arch Bridge of Highway[S]. Beijing:China Communications Press, 2015. (in Chinese)
[14] JTG D63-2007公路桥涵地基与基础设计规范[S]. 北京:人民交通出版社, 2007. JTG D63-2007 Code for Design of Ground Base and Foundation of Highway Bridges and Culverts[S]. Beijing:China Communications Press, 2007. (in Chinese)
[15] JTG/T B02-01-2008公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communications Press, 2008. (in Chinese)
[16] Hayden C P, Bray J D, Abrahamson N A. Selection of near-fault pulse motions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(7):04014030.
[17] Kalkan E, Kunnath S K. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra,2006, 22(2):367-390.
[18] Zamora M, Riddell R. Elastic and inelastic response spectra considering near-fault effects[J]. Journal of Earthquake Engineering, 2011, 15(5):775-808.
[19] Susantha K, Ge H, Usami T. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes[J]. Engineering Structures, 2001, 23(10):1331-1347.

相似文献/References:

[1]吴庆雄,陈宝春,高桥和雄.新西海桥的非线性地震响应分析[J].地震工程与工程振动,2008,28(05):055.
 WU Qingxiong,CHEN Baochun,TAKAHASHI Kazuo.Nonlinear seismic analysis of New Saikai Bridge[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2008,28(03):055.
[2]何伟,朱亚飞,何容.环境温度对钢管混凝土拱桥吊杆振动影响及张力测定研究[J].地震工程与工程振动,2016,36(04):217.[doi:10.13197/j.eeev.2016.04.217.hew.026]
 HE Wei,ZHU Yafei,HE Rong.Research on vibration properties of suspenders of concrete filled steel tube arch bridges affected by temperature and tension measuring methods[J].EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS,2016,36(03):217.[doi:10.13197/j.eeev.2016.04.217.hew.026]

备注/Memo

备注/Memo:
收稿日期:2019-10-29;改回日期:2020-01-05。
基金项目:重庆市教委科学技术研究项目(KJQN201900737);重庆市自然科学基金项目(cstc2019jcyj-msxmX0691)
作者简介:张令(1993-),男,硕士研究生,主要从事桥梁抗震研究.E-mail:zhanglingos@163.com
通讯作者:徐略勤(1983-),男,教授,博士,主要从事桥梁抗震研究.E-mail:xulueqin@163.com
更新日期/Last Update: 1900-01-01